
Diverse Near Neighbor Problem

[Extended Abstract]

Sofiane Abbar
QCRI, Doha, Qatar

sabbar@qf.org.qa

Sihem Amer-Yahia
CNRS, LIG, Paris, France

Yahia@imag.fr

Piotr Indyk
MIT, Cambridge, MA, USA

indyk@mit.edu
Sepideh Mahabadi

MIT, Cambridge, MA, USA
mahabadi@mit.edu

Kasturi R. Varadarajan
U Iowa, Iowa City, IA, USA

kvaradar@cs.uiowa.edu

ABSTRACT
Motivated by the recent research on diversity-aware search,
we investigate the k-diverse near neighbor reporting prob-
lem. The problem is defined as follows: given a query point
q, report the maximum diversity set S of k points in the ball
of radius r around q. The diversity of a set S is measured
by the minimum distance between any pair of points in S
(the higher, the better).

We present two approximation algorithms for the case
where the points live in a d-dimensional Hamming space.
Our algorithms guarantee query times that are sub-linear
in n and only polynomial in the diversity parameter k, as
well as the dimension d. For low values of k, our algorithms
achieve sub-linear query times even if the number of points
within distance r from a query q is linear in n. To the best
of our knowledge, these are the first known algorithms of
this type that offer provable guarantees.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations; E.2 [Data Storage
Representations]: Hash-table representations

Keywords
Near Neighbor, Diversity, Core-set, Sub-linear

1. INTRODUCTION
The near neighbor reporting problem (a.k.a. range query)

is defined as follows: given a collection P of n points, build
a data structure which, given any query point, reports all
data points that are within a given distance r to the query.
The problem is of major importance in several areas, such
as databases and data mining, information retrieval, image
and video databases, pattern recognition, statistics and data
analysis. In those application, the features of each object of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCG’13, June 17-20, 2013, Rio de Janeiro, Brazil.
Copyright 2013 ACM 978-1-4503-2031-3/13/06 ...$15.00.

interest (document, image, etc) are typically represented as
a point in a d-dimensional space and the distance metric is
used to measure similarity of objects. The basic problem
then is to perform indexing or similarity searching for query
objects. The number of features (i.e., the dimensionality)
ranges anywhere from tens to thousands.

One of the major issues in similarity search is how many
answers to retrieve and report. If the size of the answer
set is too small (e.g., it includes only the few points closest
to the query), the answers might be too homogeneous and
not informative [6]. If the number of reported points is too
large, the time needed to retrieve them is high. Moreover,
long answers are typically not very informative either. Over
the last few years, this concern has motivated a significant
amount of research on diversity-aware search [8, 18, 5, 12,
17, 16, 7] (see [6] for an overview). The goal of that work
is to design efficient algorithms for retrieving answers that
are both relevant (e.g., close to the query point) and diverse.
The latter notion can be defined in several ways. One of the
popular approaches is to cluster the answers and return only
the cluster centers [6, 8, 14, 1]. This approach however can
result in high running times if the number of relevant points
is large.

Our results.
In this paper we present two efficient approximate algo-

rithms for the k-diverse near neighbor problem. The prob-
lem is defined as follows: given a query point, report the
maximum diversity set S of k points in the ball of radius
r around q. The diversity of a set S is measured by the
minimum distance between any pair of points in S. In other
words, the algorithm reports the approximate solution to
the k-center clustering algorithm applied to the list points
that are close to the query. The running times, approxi-
mation factors and the space bounds of our algorithms are
given in Table 1. Note that the Algorithm A is dominated
by Algorithm B; however, it is simpler and easier to analyze
and implement, and has been used in applications before for
diverse news retrieval [1].

The key feature of our algorithms is that they guarantee
query times that are sub-linear in n and polynomial in the
diversity parameter k and the dimension d, while at the same
time providing constant factor approximation guarantees1

for the diversity objective. Note that for low values of k our

1Note that approximating the diversity objective is in-
evitable, since it is NP-hard to find a subset of size k which

Algorithm A Algorithm B
Distance approx factor c > 2 c > 1
Diversity approx factor 6 6

Space O((n log k)1+
1
c−1 + nd) O(log k · n1+ 1

c + nd)

Query Time O((k2 + logn
r

)d · (log k)
c
c−1 · n

1
c−1) O((k2 + logn

r
)d · log k · n1/c)

Table 1: Performance of our algorithms

algorithms have sub-linear query times even if the number
of points within distance r from q is linear in n. To the best
of our knowledge, these are the first known algorithms of
this type with provable guarantees. One of the algorithms
(Algorithm A) is closely related to algorithms investigated in
applied works [1, 14]. However, those papers did not provide
rigorous guarantees on the answer quality.

1.1 Past work
In this section we present an overview of past work on

(approximate) near neighbor and diversity aware search that
are related to the results in this paper.

Near neighbor.
The near neighbor problem has been a subject of exten-

sive research. There are several efficient algorithms known
for the case when the dimension d is “low”. However, despite
decades of intensive effort, the current solutions suffer from
either space or query time that is exponential in d. Thus,
in recent years, several researchers proposed methods for
overcoming the running time bottleneck by using approxi-
mation. In the approximate near neighbor reporting/range
query, the algorithm must output all points within the dis-
tance r from q, and can also output some points within the
distance cr from q.

One of the popular approaches to near neighbor prob-
lems in high dimensions is based on the concept of locality-
sensitive hashing (LSH) [10]. The idea is to hash the points
using several (say L) hash functions so as to ensure that, for
each function, the probability of collision is much higher for
objects which are close to each other than for those which
are far apart. Then, one can solve (approximate) near neigh-
bor reporting by hashing the query point and retrieving all
elements stored in buckets containing that point. This ap-
proach has been used e.g., for the E2LSH package for high-
dimensional similarity search [4].

The LSH algorithm has several variants, depending on the
underlying distance functions. In the simplest case when
the dis-similarity between the query points is defined by the
Hamming distance, the algorithm guarantees that (i) each
point within the distance r from from q is reported with a
constant (tunable) probability and (ii) the query time is at

most O(d(n1/c + |Pcr(q)|)), where PR(q) denotes the set of
points in P with the distance R from q. Thus, if the size of
the answer set Pcr(q) is large, the efficiency of the algorithm
decreases. Heuristically, a speedup can be achieved [14] by
clustering the points in each bucket and retaining only the
cluster centers. However, the resulting algorithm did not
have any guarantees (until now).

maximizes the diversity with approximation factor a < 2
[13].

Diversity.
In this paper we adopt the ”content-based”definition of di-

versity used e.g., in [6, 8, 14, 1, 7]. The approach is to report
k answers that are ”sufficiently different” from each other.
This is formalized as maximizing the minimum distance be-
tween any pair of answers, the average distance between the
answers, etc. In this paper we use the minimum distance for-
mulation, and use the greedy clustering algorithm of [9, 13]
to find the k approximately most diverse points in a given
set.

To the best of our knowledge, the only prior work that ex-
plicitly addresses our definition of the k-diverse near neigh-
bor problem is [1]. It presents an algorithm (analogous to
Algorithm A in this paper, albeit for the Jaccard coefficient
as opposed to the Hamming metric) and applies it to prob-
lems in news retrieval. However, that paper does not pro-
vide any formal guarantees on the accuracy of the reported
answers.

1.2 Our techniques
Both of our algorithms use LSH as the basis. The key chal-

lenge, however, is in reducing the dependence of the query
time on the size of the set Pcr(q) of points close to q. The
first algorithm (Algorithm A) achieves this by storing only
the k most diverse points per each bucket. This ensures that
the total number of points examined during the query time
is at most O(kL), where L is the number of hash functions.
However, proving the approximation guarantees for this al-
gorithm requires that no outlier (i.e., point with distance
> cr from q) is stored in any bucket. Otherwise that point
could have been selected as one of the k diverse points for
that bucket, replacing a “legitimate” point. This require-
ment implies that the algorithm works only if the distance
approximation factor c is greater than 2.

The 6-approximation guarantee for diversity is shown by
using the notion of coresets [2]. It is easy to see that the
maximum k-diversity of a point set is within a factor of 2
from the optimal cost of its (k − 1)-center clustering cost.
For the latter problem it is known how to construct a small
subset of the input point set (a coreset) such that for any
set of cluster centers, the costs of clustering the coreset is
within a constant factor away from the cost of clustering the
whole data set. Our algorithm then simply computes and
stores only a coreset for each LSH bucket. Standard coreset
properties imply that the union of coresets for the buckets
touched by the query point q is a coreset for all points in
those buckets. Thus, the union of all coresets provides a
sufficient information to recover an approximately optimal
solution to all points close to q.

In order to obtain an algorithm that works for arbitrary
c > 1, we need the algorithms to be robust to outliers. The
standard LSH analysis guarantees that that the number of
outliers in all buckets is at most O(L). Algorithm B achieves
the robustness by storing a robust coreset [11, 3], which can

tolerate some number of outliers. Since we do not know a
priori how many outliers are present in any given bucket,
our algorithm stores a sequence of points that represents a
coreset robust to an increasing number of outliers. During
the query time the algorithm scans the list until enough
points have been read to ensure the robustness.

2. PROBLEM DEFINITION
Let (∆, dist) be a d-dimensional metric space. We start

from two definitions.

Definition 1. For a given set S ∈ ∆, its diversity is de-
fined as the minimum pairwise distance between the points
of the set, i.e., div(S) = minp,p′∈S dist(p, p

′)

Definition 2. For a given set S ∈ ∆, its k-diversity is
defined as the maximum achievable diversity by choosing a
subset of size k, i.e., divk(S) = maxS′⊂S,|S′|=k div(S′). We
also call the maximizing subset S′ the optimal k-subset
of S. Note that k-diversity is not defined in the case where
|S| < k.

To avoid dealing with k-diversity of sets of cardinality
smaller than k, in the following we adopt the convention
that all points p in the input point set P are duplicated k
times. This ensures that for all non-empty sets S consid-
ered in the rest of this paper the quantity divk(S) is well
defined, and equal to 0 if the number of distinct points in
S is less than k. It can be easily seen that this leaves the
space bounds of our algorithms unchanged.

The k-diverse Near Neighbor Problem is defined as
follows: given a query point q, report a set S such that: (i)
S ⊂ P ∩ B(q, r), where B(q, r) = {p|dist(p, q) ≤ r} is the
ball of radius r, centered at q; (ii) |S| = k; (iii) div(S) is
maximized.

Since our algorithms are approximate, we need to define
the Approximate k-diverse Near Neighbor Problem.
In this case, we require that for some approximation factors
c > 1 and α > 1: (i) S ⊂ P ∩ B(q, cr); (ii) |S| = k; (iii)
div(S) ≥ 1

α
divk(P ∩B(q, r)).

3. PRELIMINARIES

3.1 GMM Algorithm
Suppose that we have a set of points S ⊂ ∆, and want to

compute an optimal k-subset of S. That is, to find a subset
of k points, whose pairwise distance is maximized. Although
this problem is NP-hard, there is a simple 2-approximate
greedy algorithm [9, 13], called GMM .

In this paper we use the following slight variation of the
GMM algorithm 2. The algorithm is given a set of points
S, and the parameter k as the input. Initially, it chooses
some arbitrary point a ∈ S. Then it repeatedly adds the
next point to the output set until there are k points. More
precisely, in each step, it greedily adds the point whose min-
imum distance to the currently chosen points is maximized.
Note that the convention that all points have k duplicates
implies that if the input point set S contains less than k dis-
tinct points, then the output S′ contains all of those points.

2The proof of the approximation factor this variation
achieves is virtually the same as the proof in [13]

Algorithm 1 GMM

Input S: a set of points, k: size of the subset
Output S′: a subset of S of size k.

1: S′ ← An arbitrary point a
2: for i = 2→ k do
3: find p ∈ S \ S′ which maximizes minx∈S′ dist(p, x)
4: S′ ← S′ ∪ {p}
5: end for
6: return S′

Lemma 1. The running time of the algorithm is O(k·|S|),
and it achieves an approximation factor of at most 2 for the
k-diversity divk(S).

3.2 Coresets

Definition 3. Let (P, dist) be a metric. For any subset of
points S, S′ ⊂ P , we define the k-center cost, KC(S, S′) as
maxp∈Sminp′∈S′dist(p, p

′). The Metric k-center Prob-
lem is defined as follows: given S, find a subset S′ ⊂ S of
size k which minimizes KC(S, S′). We denote this optimum
cost by KCk(S).

k-diversity of a set S is closely related to the cost of the best
(k − 1)-center of S. That is,

Lemma 2. KCk−1(S) ≤ divk(S) ≤ 2KCk−1(S)

Proof. For the first inequality, suppose that S′ is the
optimal k-subset of S. Also let a ∈ S′ be an arbitrary point
and S′− = S′ \ {a}. Then for any point b ∈ S \ S′, we have
minp∈S′−dist(b, p) ≤ minp∈S′−dist(a, p), otherwise b was a

better choice than a, i.e., div(b ∪ S′−) > div(S′). Therefore,
KC(S, S′−) ≤ divk(S) and the inequality follows.

For the second part, let C = {a1, · · · , ak−1} be the opti-
mum set of the (k − 1)-center for S. Then since S′ has size
k, by pigeonhole principle, there exists p, p′ ∈ S′ and a, such
that

a = arg minc∈C dist(p, c) = arg minc∈C dist(p
′, c)

and therefore, by triangle inequality we get

divk(S) = div(S′) ≤ dist(p, p′) ≤ dist(p, a) + dist(a, p′)

≤ 2KCk−1(S)

Definition 4. Let (P, dist) be our metric. Then for β ≤ 1,
we define a β-coreset for a point set S ⊂ P to be any subset
S′ ⊂ S such that for any subset of (k− 1) points F ⊂ P , we
have KC(S′, F) ≥ βKC(S, F).

Definition 5. Let (P, dist) be our metric. Then for β ≤ 1
and an integer `, we define an `-robust β-coreset for a
point set S ⊂ P to be any subset S′ ⊂ S such that for any
set of outliers O ⊂ P with at most ` points, S′ \ O is a
β-coreset of S \O.

3.3 Locality Sensitive Hashing
Locality-sensitive hashing is a technique for solving ap-

proximate near neighbor problems. The basic idea is to

hash the data and query points in a way that the proba-
bility of collision is much higher for points that are close to
each other, than for those which are far apart. Formally, we
require the following.

Definition 6. A family H = h : ∆→ U is (r1, r2, p1, p2)-
sensitive for (∆, dist), if for any p, q ∈ ∆, we have

• if dist(p, q) ≤ r1, then PrH[h(q) = h(p)] ≥ p1

• if dist(p, q) ≤ r2, then PrH[h(q) = h(p)] ≤ p2

In order for a locality sensitive family to be useful, it has to
satisfy inequalities p1 > p2 and r1 < r2.

Given an LSH family, the algorithm creates L hash func-
tions g1, g2, · · · , gL, as well as the corresponding hash ar-
rays A1, A2, · · · , AL. Each hash function is of the form
gi =< hi,1, · · · , hi,K >, where hi,j is chosen uniformly at
random from H. Then each point p is stored in bucket gi(p)
of Ai for all 1 ≤ i ≤ L. In order to answer a query q, we
then search points in A1(g1(q)) ∪ · · · ∪ AL(gL(q)). That is,
from each array, we only have to look into the single bucket
which corresponds to the query point q.

In this paper, for simplicity, we consider the LSH for the
Hamming distance. However, similar results can be shown
for general LSH functions. We recall the following lemma
from [10].

Lemma 3. Let dist(p, q) be the Hamming metric for
p, q ∈ Σd, where Σ is any finite alphabet. Then for any r, c ≥
1, there exists a family H which is (r, rc, p1, p2)− sensitive,
where p1 = 1 − r/d and p2 = 1 − rc/d. Also, if we let

ρ = log 1/p1
log 1/p2

, then we have ρ ≤ 1/c. Furthermore, by padding

extra zeros, we can assume that r/d ≤ 1/2.

4. ALGORITHM A
The algorithm (first introduced in [1]) is based on the

LSH algorithm. During the preprocessing, LSH creates L
hash functions g1, g2, · · · , gL, and the arrays A1, A2, · · · , AL.
Then each point p is stored in buckets Ai[gi(p)], for all
i = 1 · · ·L. Furthermore, for each array Ai, the algorithm
uses GMM to compute a 2-approximation of the optimal
k-subset of each bucket, and stores it in the corresponding
bucket of A′i. This computed subset turns out to be a 1/3-
coreset of the points of the bucket.

Given a query q, the algorithm computes the union of the
buckets Q = A′1(g1(q))∪· · ·∪A′L(gL(q)), and then it removes
from Q all outlier points, i.e., the points which are not
within distance cr of q. In the last step, the algorithm runs
GMM on the set Q and returns the approximate optimal
k-subset of Q.

The pseudo codes are shown in Algorithm 2 and 3. In the
next section we discuss why this algorithm works.

4.1 Analysis
In this section, first we determine the value of the param-

eters L and K in terms of n and ρ ≤ 1/c, such that with
constant probability, the algorithm works. Here, L is the
total number of hash functions used, and K is the number
of hash functions hi,j used in each of the gi. We also need to
argue that limiting the size of the buckets to k, and storing
only the approximate k most diverse points in A′, works well
to achieve a good approximation. We address these issues
in the following.

Algorithm 2 Preprocessing

Input G = {g1, · · · , gL}: set of L hashing functions, P :
collection of points, k
Output A′ = {A′1, · · · , A′L}

1: for all points p ∈ P do
2: for all hash functions gi ∈ G do
3: add p to the bucket Ai[gi(p)]
4: end for
5: end for
6: for Ai ∈ A do
7: for j = 1→ size(Ai) do
8: A′i[j] = GMM(Ai[j], k) // only store the approxi-

mate k-diverse points in each bucket
9: end for

10: end for

Algorithm 3 Query Processing

Input q: The query point, k
Output Q : The set of k-diverse points.

1: Q← ∅
2: for i = 1→ L do
3: Q← Q ∪A′i[gi(q)]
4: end for
5: for all p ∈ Q do
6: if dist(q, p) > cr then
7: remove p from Q // since it is an outlier
8: end if
9: end for

10: Q← GMM(Q, k)
11: return Q

Lemma 4. For c > 2, There exists hash functions
g1, · · · , gL of the form gi =< hi,1, · · · , hi,K > where hi,j ∈
H, for H, p1 and p2 defined in 3, such that by setting L =
(log (4k)/p1)1/(1−ρ)× (4n)ρ/(1−ρ), and K = dlog1/p2

(4nL)e,
the following two events hold with constant probability:

• ∀p ∈ Q∗ : ∃i such that p ∈ Ai[gi(q)], where Q∗ de-
notes the optimal solution (the optimal k-subset of
P ∩B(q, r)).

• ∀p ∈
⋃
iAi[gi(q)] : dist(p, q) ≤ cr, i.e., there is no

outlier among the points hashed to the same bucket as
q in any of the hash functions.

See Appendix A for a proof.

Corollary 1. Since each point is hashed once in each
hash function, the total space used by this algorithm is at
most

nL = n(log (4k)/p1(4n)ρ)1/(1−ρ) = O((
n log k

1− r/d)
1

1−ρ)

= O((n log k)1+
1
c−1)

where we have used the fact that c > 2, ρ ≤ 1/c, and r/d ≤
1/2. Also we need O(nd) space to store the points.

Corollary 2. The query time is O(((logn)/r + k2) ·
(log k)

c
c−1 · n

1
c−1 d).

Proof. The query time of the algorithm for each query
is bounded by O(L) hash computation each taking O(K)

O(KL) = O((log1/p2
(4nL)) · L) = O(

logn

log (1/p2)
L)

= O(
d

r
logn · (log k

1− r/d)
c
c−1 · n

1
c−1)

= O(
d

r
(log k)

c
c−1 n

1
c−1 logn)

Where we have used the approximation log p2 ≈ 1−p2 = cr
d

, c ≥ 2 and r/d ≤ 1/2.
Also in the last step, we need to run the GMM algorithm

for at most kL number of points in expectation. This takes

O(k2Ld) = O(k2 · (log k/p1(4n)ρ)1/(1−ρ)d)

= O(k2(log k)
c
c−1 · n

1
c−1 d)

Lemma 5. GMM(S, k) computes a 1/3-coreset of S.

Proof. Suppose that the set of k points computed by
GMM is S′. Now take any subset of k − 1 points F ⊂ P .
By pigeonhole principle there exist a, b ∈ S′ whose closest
point in F is the same, i.e., there exists c ∈ F , such that

c = arg minf∈F dist(a, f) = arg minf∈F dist(b, f)

and therefore, by triangle inequality we get

div(S′) ≤ dist(a, b) ≤ dist(a, c) + dist(b, c) ≤ 2KC(S′, F)

Now take any point s ∈ S and let s′ be the closest point of
S′ to s and f be the closest point of F to s′. Also let a ∈ S′
be the point added in the last step of the GMM algorithm.
Then from definitions of s′ and a, and the greedy choice of
GMM, we have

dist(s, s′) ≤ min
p∈S′\{a}

dist(p, s) ≤ min
p∈S′\{a}

dist(p, a) ≤ div(S′)

and thus by triangle inequality,

dist(s, f) ≤ dist(s, s′) + dist(s′, f) ≤ div(S′) +KC(S′, F)

≤ 3KC(S′, F)

Since this holds for any s ∈ S, we can infer that KC(S, F) ≤
3KC(S′, F) which completes the proof.

Lemma 6. Suppose S1, · · · , Sm are subsets of P , and
let S =

⋃
i Si. Also suppose that Ti = GMM(Si, k) is

the 2-approximation of the optimal k-subset of Si which
is achieved by running the GMM algorithm on Si. Also
define T =

⋃
i Ti, and let T ′ = GMM(T, k) be the 2-

approximation of the optimal k-subset of T . Then we have
div(T ′) ≥ 1

6
divk(S).

Proof. Let S′ denote the optimal k-subset of S. Also
let a ∈ T ′ be the added point at the last step of algorithm
GMM(T, k) and T ′− = T ′ \ {a}. By pigeonhole principle
there exists p, p′ ∈ S′ and c ∈ T ′− such that

c = arg mint∈T ′−
dist(t, p) = arg mint∈T ′−

dist(t, p′)

Therefore, by triangle inequality, lemma 5, and the fact that
union of β-coresets of Si is a β-coreset for the union S, we
have

divk(S) = div(S′) ≤ dist(p, p′) ≤ dist(p, c) + dist(p′, c)

≤ 2KC(S, T ′−) ≤ 6KC(T, T ′−)

And since for any b ∈ T we have

min
t∈T ′−

dist(t, b) ≤ min
t∈T ′−

dist(t, a) ≤ div(T ′)

And thus, KC(T, T ′−) ≤ div(T ′) and the lemma follows.

Corollary 3. With constant probability, the approxima-
tion factor achieved by the algorithm is 6.

Proof. Let Si = Ai[gi(q)] and S =
⋃
i Si. Also let Ti =

A′i[gi(q)] and T =
⋃
i Ti. Furthermore define Q∗ be the

optimal k-subset of P ∩B(q, r), T ′ = GMM(T, k) and Q be
our returned set. From the description of the algorithm, it is
obvious that Q ⊂ B(q, cr). So, we only have to argue about
its diversity.
By Theorem 4, with constant probability the two following
statements hold:

• S ⊂ B(q, cr). Therefore, we have T ⊂ B(q, cr), which
shows that when we run the Algorithm 3 for q, since
T contains no outlier, the GMM algorithm in Line 10
is called on the set T itself and thus, Q = T ′.

• Q∗ ⊂ S. So we have divk(S) ≥ divk(Q∗) = div(Q∗)

Therefore, by Lemma 6 we have

div(Q) ≥ 1

6
divk(S) ≥ 1

6
div(Q∗)

5. ALGORITHM B
In this section, we introduce and analyze a modified ver-

sion of Algorithm A which also achieves a constant factor
approximation. Suppose that we knew the total number of
outliers in any bucket is at most `. Then, we can store for
each single bucket of the array A, an `-robust 1

3
-coreset in

the corresponding bucket of array A′. First we show in Al-
gorithm 4, how to find an `-robust β-coreset if we know how
to find a β-coreset. This is the algorithm of [3] that “peels”
coresets β-coresets, and its analysis follows [15].

Algorithm 4 (`, β)-coreset

Input S: set of points
Output S′: An array which is a (`, β)-coreset of S

1: S′ ← ∅
2: for i = 1→ (`+ 1) do
3: Ri ← β-coreset of S
4: Append Ri to the end of S′

5: S ← S \Ri
6: end for
7: return S′

Lemma 7. Let O ⊂ P be the set of outliers and S′j denote
set of the first (kj) points in S′ which is S′ after the jth
round of the algorithm. Then for any 0 ≤ j ≤ ` that satisfies∣∣S′j+1 ∩O

∣∣ ≤ j, we have that S′j+1\O is a β-coreset for S\O.

Proof. Let F ⊂ P be any subset of (k − 1) points, and
q be the furthest point from F in (S \O), i.e.,

q = arg maxp∈S\O min
f∈F

dist(p, f)

Now for any i ≤ (j + 1), if q is a point in Ri, then the
lemma holds since KC(S, F) = KC(S′j+1, F). Otherwise,
because q has not been chosen in any of the first (j + 1)
rounds, each of the Ri’s (for i ≤ j + 1) contains an ri such
that KC({ri}, F) ≥ βKC({q}, F). Of these (j + 1)ri’s, at
least one is not in O and therefore, KC(S′j+1 \ O,F) ≥
βKC(S \O,F).

Corollary 4. Algorithm 4 computes the (`, β)-coreset of
S correctly.

Proof. Note that here for any set of outliers O ⊂ P
such that |O| ≤ `, the condition in lemma 7 is satisfied for
j = `. Thus when the algorithm returns, it has computed
an `-robust β-coreset correctly.

Since by lemma 5, we know that GMM(S, k) computes a
1
3
-coreset of size k for S, it is enough to replace line 3 of the

algorithm 4 with R ← GMM(S, k), in order to achieve an
`-robust 1

3
-coreset of size k(`+ 1) for the set S.

Then the only modification to the preprocessing part of
Algorithm A is that now, each bucket of A′i keeps an `-robust
1
3
-coreset of the corresponding bucket of Ai. So the line 8 of

Algorithm 2 is changed to A′i[j] = (`, β)-coreset(Ai[j], ` =
3L, β = 1/3).

The pseudo-code of processing a query is shown in Algo-
rithm 5. For each bucket that corresponds to q, it tries to
find the smallest value of ` such that the total number of
outliers in the first k(` + 1) elements of A′i[gi(q)] does not
exceed `. It then adds these set of points to T and returns
the approximate optimal k subset of non-outlier points of T .

Algorithm 5 Query Processing

Input q: The query point
Output Q : The set of k-diverse points.

1: T ← ∅
2: O ← set of outliers
3: for i = 1→ L do
4: for ` = 0→ 3L do
5: U `+1

i = the first k(`+ 1) points of A′i[gi(q)]
6: if

∣∣U `+1
i ∩O

∣∣ ≤ ` then
7: `i ← `
8: Ti ← U `+1

i

9: break
10: end if
11: end for
12: T ← T ∪ Ti
13: end for
14: Q← GMM(T \O, k)
15: return Q

Note that the inner loop (lines 4 to 11) of Algorithm 5 can
be implemented efficiently. Knowing the number of outliers
in U ji , there are only k more elements to check for being

outliers in U j+1
i . Also, each point can be checked in O(d) if

it is an outlier. So in total the inner loop takes O(k`id).

5.1 Analysis
We first state the following theorem which is similar to

Theorem 4. The proof is very similar to the original proof
of correctness of the LSH algorithm given in [10], and hence
omitted.

Theorem 1. There exists hash functions g1, · · · , gL of
the form gi =< hi,1, · · · , hi,K > where hi,j ∈ H, for H, p1
and p2 defined in 3 such that by setting L = log(4k)×nρ/p1,
and K = dlog1/p2

ne, with constant probability the following
two events hold:

• ∀p ∈ Q∗ : ∃i such that p ∈ Ai[gi(q)], where Q∗ de-
notes the optimal solution (the optimal k-subset of
P ∩B(q, r)).

• |{p ∈
⋃
iAi[gi(q)] : dist(p, q) > cr}| ≤ 3L, i.e. the

number of outliers among points hashed to the same
bucket as q, is at most 3L.

Corollary 5. Since each point is hashed once in each
hash function and each bucket of A′i is a subset of the corre-
sponding bucket of Ai, the total space used by this algorithm
is at most

nL = n log(4k) · nρ/p1 = O(log k · n1+1/c)

where we have used the fact that ρ ≤ 1/c, and that p1 =
1−r/d ≥ 1/2. Also we need O(nd) space to store the points.

Theorem 2. With constant probability, the approxima-
tion factor achieved by the algorithm is 6.

Proof. First we start by defining a set of notations which
is useful in the proof.

• Let Si = A[gi(q)], and S =
⋃
i Si.

• Let O be the set of outliers, i.e., O = S \B(q, cr). We
know that with constant probability |O| ≤ 3L

• Let S′ be the optimal k-subset of S \O.

• Let Ui = A′i[gi(q)] and U ji be the first jk elements of
Ui (note that since Algorithm 4 returns an array, the

elements of U are ordered). We define Ti = U
(`i+1)
i

where `i is chosen such that for any `′i < `i, we have∣∣∣U (`′i+1)
i ∩O

∣∣∣ > `′i. This is exactly the Ti variable in

Algorithm 5. Moreover, let T =
⋃
i Ti.

• Define Q∗ to be the optimal k-subset of P ∩ B(q, r),
and Q be our returned set, i.e., Q = GMM(T \O, k).
Let a ∈ Q be the added point at the last step of GMM,
then define Q− = Q \ {a}.

From the description of algorithm it is obvious that Q ⊂
B(q, cr). Also by Theorem 1, with constant probability we
have Q∗ ⊂ S, and that the total number of outliers does not
exceed 3L. Thus we have divk(Q∗) = div(Q∗) ≤ divk(S \
O), and therefore it is enough to prove that under these
conditions, div(Q) ≥ divk(S \O)/6 = div(S′)/6.

By pigeonhole principle, since |S′| = k and |Q−| = k − 1,
then there exist p, p′ ∈ S′ whose closest point in Q− is the
same, i.e., there exists c ∈ Q− such that KC({p}, Q−) =
dist(p, c) and KC({p′}, Q−) = dist(p′, c). Therefore, by
triangle inequality, we have

div(S′) ≤ dist(p, p′) ≤ dist(p, c) + dist(p′, c)

≤ 2KC(S \O,Q−)
(1)

By lemma 7 Ti \ O is a 1
3
-coreset for Si \ O, and therefore

their union T \O, is a 1
3
-coreset for S \O, and thus we have

KC(S \O,Q−) ≤ 3KC(T \O,Q−) (2)

Now note that a is chosen in the last step of GMM(T \O, k).
Thus for any point b ∈ (T \O) \Q, since it is not chosen by
GMM, b should be closer to Q− than a, i.e., we should have
KC({b}, Q−) ≤ KC({a}, Q−). This means that

KC(T \O,Q−) ≤ KC({a}, Q−) ≤ div(Q) (3)

Putting together equations 1, 2 and 3 finishes the proof.

Lemma 8. With constant probability the query time is
O((k2 + logn

r
)d · log k · n1/c)

Proof. The query time of the algorithm for each query,
has three components. First there are O(L) hash computa-
tions each taking O(K)

O(KL) = O((log1/p2
n) · L) = O(

d

r
logn · log k

1− r/d · n
1/c)

= O(log k · n1/c · logn · d
r

)

Where we have used the approximation log p2 ≈ 1−p2 = cr
d

, c ≥ 1 and r/d ≤ 1/2. Second, in the last step of Algorithm
5, with constant probability the total number of outliers is
at most 3L. Therefore, we need to run the GMM algorithm
for at most O(kL) number of points, i.e., |T | ≤ 3L. Then
GMM takes

O(k2Ld) = O(d · k2 log k · n1/c)

Finally, as mentioned before, the inner loop (steps 4 − 11)
of the algorithm 5 can be implemented incrementally such
that the total time it takes is O(k`id).Thus the total running
time of the loop is O(kd

∑
i `i) = O(kLd).

6. ACKNOWLEDGMENTS
This work was supported a grant from Draper Lab, an

NSF CCF-1012042 award, MADALGO project and the
Packard Foundation.

7. REFERENCES
[1] S. Abbar, S. Amer-Yahia, P. Indyk, and S. Mahabadi.

Efficient computation of diverse news. In WWW, 2013.

[2] P. K. Agarwal, S. Har-peled, and K. R. Varadarajan.
Geometric approximation via coresets. In
Combinatorial and Computational Geometry,
volume 52, pages 1–30, 2005.

[3] P. K. Agarwal, S. Har-peled, and H. Yu. Robust shape
fitting via peeling and grating coresets. In In Proc.
17th ACM-SIAM Sympos. Discrete Algorithms, pages
182–191, 2006.

[4] A. Andoni. LSH algorithm and implementation
(E2LSH). http://www.mit.edu/ andoni/LSH/.

[5] A. Angel and N. Koudas. Efficient diversity-aware
search. In SIGMOD, pages 781–792, 2011.

[6] M. Drosou and E. Pitoura. Search result
diversification. SIGMOD Record, pages 41–47, 2010.

[7] P. Fraternali, D. Martinenghi, and M. Tagliasacchi.
Top-k bounded diversification. In SIGMOD, pages
421–432, 2012.

[8] S. Gollapudi and A. Sharma. An axiomatic framework
for result diversification. In WWW.

[9] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance.

[10] S. Har-Peled, P. Indyk, and R. Motwani. Approximate
nearest neighbor: Towards removing the curse of
dimensionality. Theory Of Computing, 8:321–350,
2012.

[11] S. Har-peled and Y. Wang. Shape fitting with outliers.
SIAM J. Comput., 33(2):269–285, 2004.

[12] A. Jain, P. Sarda, and J. R. Haritsa. Providing
diversity in k-nearest neighbor query results. In
PAKDD, pages 404–413, 2004.

[13] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Facility
dispersion problems: Heuristics and special cases.
Algorithms and Data Structures, pages 355–366, 1991.

[14] Z. Syed, P. Indyk, and J. Guttag. Learning
approximate sequential patterns for classification.
Journal of Machine Learning Research., 10:1913–1936,
2009.

[15] K. Varadarajan and X. Xiao. A near-linear algorithm
for projective clustering integer points. In SODA,
pages 1329–1342, 2012.

[16] M. J. Welch, J. Cho, and C. Olston. Search result
diversity for informational queries. In WWW, pages
237–246, 2011.

[17] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia.
Recommendation diversification using explanations. In
ICDE, pages 1299–1302, 2009.

[18] C.-N. Ziegler, S. M. Mcnee, J. A. Konstan, and
G. Lausen. Improving recommendation lists through
topic diversification. In WWW, pages 22–32, 2005.

APPENDIX
A. PROOF OF LEMMA 4

Proof. For the first argument, consider a point p ∈ Q∗.
By Definition 6 the probability that gi(p) = gi(q) for a given
i, is bounded from below by

pK1 ≥ p
log1/p2

(4nL)+1

1 = p1(4nL)
− log 1/p1

log 1/p2 = p1(4nL)−ρ

Thus the probability that no such gi exists is at most

ζ = (1− p1(4nL)−ρ)L ≤ (1/e)
L· p1

(4nL)ρ = (1/e)
L(1−ρ)· p1

(4n)ρ

= (1/e)
(log (4k)/p1(4n)

ρ)· p1
(4n)ρ ≤ 1

4k

Now using union bound, the probability that ∀p ∈ Q∗ :
∃i, such that p ∈ Ai[gi(q)] is at least 3

4
.

For the second part, note that the probability that gi(p) =
gi(q) for p ∈ P \ B(q, cr) is at most pK2 = 1

4nL
. Thus, the

expected number of elements from P \B(q, cr) colliding with
q under fixed gi is at most 1

4L
, and the expected number of

collisions in all g functions is at most 1
4
. Therefore, with

probability at least 3
4
, there is no outlier in

⋃
iAi[gi(q)].

So both events hold with probability at least 1
2
.

